Ярослав Кучера, Йозеф Гапл. Обмотки электрических вращательных машин

ПРЕДИСЛОВИЕ

Выпущенная в 1959 г. книга "Обмотки вращательных электрических машин" вызвала интерес у чехословацких специалистов. Книга была издана на чешском языке, вследствие чего круг ее читателей был сравнительно ограничен. Поэтому мы весьма приветствовали возможность издания этой книги также и на русском языке, что будет значительно содействовать ее более широкому использованию.

В предлагаемом труде мы стремились теорию обмоток поставить на строго научную базу. Обмотки различных видов исследовались на основании потенциальных многоугольников, дающих возможность определять различные свойства обмоток.

В главе об обмотках машин постоянного тока были выведены условия для правильного функционирования многократных множественных параллельных и последовательных параллельных обмоток, применявшихся до сего времени лишь в сравнительно ограниченной мере, хотя такие обмотки для крупных машин, быстроходных машин и машин на низкие напряжения имеют важное значение. Равным образом и теория уравнительных обмоток, заменяющих обмотки с эквипотенциальными соединениями была детально разработана. Такие обмотки послужили основанием для демпфированных обмоток коллекторных машин переменного тока. Для обмоток постоянного тока приведены практические таблицы для облегчения расчетов применяемых обмоток.

В главе об обмотках машин переменного тока приведены принципы устройства различных обмоток и разные способы исследования обмоточных коэффициентов. Обмотки переменного тока с дробным числом пазов на полюс и фазу рассчитывались на основании схемы Тингли, заменяющей звезду векторов и облегчающей расчет таких обмоток. Было выведено влияние обмотки на распределение индуктированного напряжения. Для исследования электромагнитных свойств обмоток переменного тока применялись диаграммы магнитных напряжений, т. н. диаграммы Гёргеса. Качество обмоток с учетом высших гармонических исследовалось по методу проф. Крондля, а также при помощи верзорного исчисления. Были рассмотрены и силы короткого замыкания, действующие на лобовые части обмотки. Равным образом и проблемам обмоток для высоких напряжений уделялось значительное внимание. В последней главе рассматриваются демпфированные обмотки коллекторных машин переменного тока, в настоящее время применяемые для улучшения коммутации. Была разработана детальная теория таких обмоток и выведен метод для их числовой оценки. Мы надеемся, что предлагаемая книга будет благоприятно принята советской технической общественностью.

Прага, январь 1962 г. Авторы

Содержание книги Обмотки электрических вращательных машин

Предисловие

Условные обозначения

Глава І. Обмотки машин постоянного тока

А. Основные понятия

1. Введение

- 2. Векторные диаграммы электродвижущих сил
- 3. Уравнения обмоток
- 4. Построение многоугольников
- 5. Петлевые обмотки
- а) Параллельные обмотки
- б) Многократные множественные параллельные петлевые обмотки
- 6. Волновые обмотки
- а) Симметричные последовательные обмотки
- б) Несимметричные последовательные обмотки
- в) Волновые параллельные обмотки
- г) Многократные множественные параллельные волновые обмотки
- д) Параллельно-последовательные обмотки
- 7. Обмотки с несколькими сторонами в пазу
- а) Петлевая равносекционная неперекрещивающаяся обмотка с укороченным шагом
- б) Петлевая ступенчатая обмотка
- в) Волновая ступенчатая обмотка
- г) Равносекционная последовательная обмотка с и = 3
- 8. Сущность уравнительных соединений
- а) Причины возникновения несимметричной нагрузки в параллельных ветвях обмоток якора
- б) Уравнительные токи
- в) Уравнительные соединения 1-го рода
- г) Уравнительные соединения И-го рода
- 9. Принципы уравнительных обмоток
- а) Составляющие обмотки с противоположными направлениями обхода
- б) Составляющие обмотки с совпадающими направлениями обхода
- Б. Систематика обмоток машин постоянного тока
- 10. Условия правильного хода различных параллельных обмоток и пульсация ЭДС машины
- 11. Петлевые параллельные обмотки
- 12. Волновые параллельные обмотки
- 13. Симметричные последовательные обмотки
- 14. Многократные параллельные обмотки
- а) Многократные параллельные петлевые обмотки
- б) Многократные параллельные волновые обмотки
- 15. Параллельно-последовательные обмотки
- 16. Обмотки с уравнительными соединениями II-го рода
- 17. Параллельная уравнительная обмотка Латура
- 18. Уравнительные многократные параллельные обмотки
- 19. Уравнительные параллельно-последовательные обмотки
- 20. Обмотки с двумя коллекторами
- 21. Специальные обмотки
- а) Обмотки для двух родов тока
- б) Обмотки с увеличенным числом пластин
- в) Расщепленные обмотки
- г) Коммутационные демпферы
- 22. Добавочные потери в обмотках крупных машин постоянного тока
- 23. Кривая напряжения между пластинами
- 24. Правила выбора типа обмоток машин постоянного тока

Глава II. Обмотки машин переменного тока

- А. Основные понятия
- 1. Гармонический анализ периодических функций при помощи рядов Фурье
- а) Общие формулы
- б) Примеры гармонического анализа
- 2. Двумерный гармонический анализ
- а) Основные операции с верзорами
- б) Разложение в гармонические составляющие при двумерном анализе
- 3. Многофазные несимметричные системы
- а) Двухфазные несимметричные системы
- б) Трехфазные несимметричные системы
- 4. Электродвижущая сила, индуктированная в обмотках машин переменного тока
- 5. Обмоточный коэффициент
- а) Обмоточный коэффициент распределения
- б) Шаговый коэффициент
- в) Исключение высших гармоник при помощи укорачивания шага
- г) Обмоточные коэффициенты для целого числа пазов на полюс и фазу
- Б. Типы обмоток машин переменного тока и их исследование
- 6. Классификация обмоток
- 7. Основные соединения обмоток
- а) однослойные обмотки
- б) двухслойные обмотки
- 8. Однофазные концентрические обмотки
- 9. Двухфазные концентрические обмотки
- 10. Трехфазные концентрические обмотки
- а) обмотки с целым числом пазов на полюс и фазу
- б) концентрические обмотки с дробным числом пазов на полюс и фазу
- 11. Трехфазные обмотки с катушками одинакового шага
- 12. Распределенные обмотки
- а) Обмотки распределенные, замкнутые
- б) Делители напряжения
- в) Распределенные обмотки разомкнутые (разрезные)
- г) Вывод узла обмотки постоянного тока при помощи разомкнутой распределенной обмотки
- д) Определение распределения обмотки одной фазы
- 13. Однофазные распределенные обмотки
- 14. Двухфазные распределенные обмотки
- 15. Трехфазные распределенные обмотки
- а) Обмотки с целым числом пазов на полюс и фазу
- б) Обмотки с дробным числом лазов на полюс и фазу
- 16. Схема Тингли
- 17. Параллельные обмотки и схемы соединений
- 18. Графическое исследование магнитного напряжения
- а) Диаграммы магнитных напряжений
- б) Показатель качества обмотки
- 19. Диаграммы магнитных напряжений
- а) Обмотки с целым числом пазов на полюс и фазу
- б) Обмотки с дробным числом пазов на полюс и фазу
- 20. Исследование магнитных напряжений при помощи верзоров

- а) Прямой метод исследования
- б) Косвенный метод исследования
- 21. Обмотки роторов асинхронных машин
- 22. Влияние обмоток на распределение индуктированного напряжения
- 23. Указания для выбора обмоток переменного тока
- 24. Добавочные потери в пазах обмотки крупных машин переменного тока4
- а) Добавочные потери в пазах, вызванные поперечным полем
- а) Обмотки с массивными проводниками
- б) Обмотки с составными проводниками
- в) Практические случаи
- г) Критическое сечение проводника в пазу
- д) Влияние вихревых токов от попер, поля в пазу
- е) Добавочные потери в пазах, вызванные продольным магнитным полем
- 25. Добавочные потери, вызванные реакцией лобовых частей обмоток
- а) Обмотки с концентрическими лобовыми частями

<u>Скачать книгу Ярослав Кучера, Йозеф Гапл. Обмотки электрических вращательных машин.</u> Издательство Чехословацкой академии наук, 1959